371 research outputs found

    Accommodating Ontologies to Biological Reality—Top-Level Categories of Cumulative-Constitutively Organized Material Entities

    Get PDF
    BACKGROUND: The Basic Formal Ontology (BFO) is a top-level formal foundational ontology for the biomedical domain. It has been developed with the purpose to serve as an ontologically consistent template for top-level categories of application oriented and domain reference ontologies within the Open Biological and Biomedical Ontologies Foundry (OBO). BFO is important for enabling OBO ontologies to facilitate in reliably communicating and managing data and metadata within and across biomedical databases. Following its intended single inheritance policy, BFO's three top-level categories of material entity (i.e. ‘object’, ‘fiat object part’, ‘object aggregate’) must be exhaustive and mutually disjoint. We have shown elsewhere that for accommodating all types of constitutively organized material entities, BFO must be extended by additional categories of material entity. METHODOLOGY/PRINCIPAL FINDINGS: Unfortunately, most biomedical material entities are cumulative-constitutively organized. We show that even the extended BFO does not exhaustively cover cumulative-constitutively organized material entities. We provide examples from biology and everyday life that demonstrate the necessity for ‘portion of matter’ as another material building block. This implies the necessity for further extending BFO by ‘portion of matter’ as well as three additional categories that possess portions of matter as aggregate components. These extensions are necessary if the basic assumption that all parts that share the same granularity level exhaustively sum to the whole should also apply to cumulative-constitutively organized material entities. By suggesting a notion of granular representation we provide a way to maintain the single inheritance principle when dealing with cumulative-constitutively organized material entities. CONCLUSIONS/SIGNIFICANCE: We suggest to extend BFO to incorporate additional categories of material entity and to rearrange its top-level material entity taxonomy. With these additions and the notion of granular representation, BFO would exhaustively cover all top-level types of material entities that application oriented ontologies may use as templates, while still maintaining the single inheritance principle

    Successful management of an aortoesophageal fistula caused by a fish bone – case report and review of literature

    Get PDF
    We report a case of aortoesophageal fistula (AEF) caused by a fish bone that had a successful outcome. Aortoesophageal fistula is a rare complication of foreign body ingestion from which few patients survive. Over one hundred cases of AEF secondary to foreign body ingestion have been documented but only seven, including our case, have survived over 12 months. Treatment involved stabilising the patient with a Sengstaken-Blakemore tube and insertion of a thoracic aortic endovascular stent-graft. Unfortunately the stent became infected and definitive open surgical repair involved removing the stent, replacing the aorta with a homograft and coverage with a left trapezius flap while under deep hypothermic arrest

    A review of a strategic roadmapping exercise to advance clinical translation of photoacoustic imaging: From current barriers to future adoption

    Get PDF
    Photoacoustic imaging (PAI), also referred to as optoacoustic imaging, has shown promise in early-stage clinical trials in a range of applications from inflammatory diseases to cancer. While the first PAI systems have recently received regulatory approvals, successful adoption of PAI technology into healthcare systems for clinical decision making must still overcome a range of barriers, from education and training to data acquisition and interpretation. The International Photoacoustic Standardisation Consortium (IPASC) undertook an community exercise in 2022 to identify and understand these barriers, then develop a roadmap of strategic plans to address them. Here, we outline the nature and scope of the barriers that were identified, along with short-, medium- and long-term community efforts required to overcome them, both within and beyond the IPASC group

    Galactic and Extragalactic Samples of Supernova Remnants: How They Are Identified and What They Tell Us

    Full text link
    Supernova remnants (SNRs) arise from the interaction between the ejecta of a supernova (SN) explosion and the surrounding circumstellar and interstellar medium. Some SNRs, mostly nearby SNRs, can be studied in great detail. However, to understand SNRs as a whole, large samples of SNRs must be assembled and studied. Here, we describe the radio, optical, and X-ray techniques which have been used to identify and characterize almost 300 Galactic SNRs and more than 1200 extragalactic SNRs. We then discuss which types of SNRs are being found and which are not. We examine the degree to which the luminosity functions, surface-brightness distributions and multi-wavelength comparisons of the samples can be interpreted to determine the class properties of SNRs and describe efforts to establish the type of SN explosion associated with a SNR. We conclude that in order to better understand the class properties of SNRs, it is more important to study (and obtain additional data on) the SNRs in galaxies with extant samples at multiple wavelength bands than it is to obtain samples of SNRs in other galaxiesComment: Final 2016 draft of a chapter in "Handbook of Supernovae" edited by Athem W. Alsabti and Paul Murdin. Final version available at https://doi.org/10.1007/978-3-319-20794-0_90-

    A case–control study of selenium in nails and prostate cancer risk in British men

    Get PDF
    In view of the experimental evidence suggesting that the micronutrient selenium reduces prostate cancer risk, we investigated the association between the selenium level in fingernails, a measure of long-term selenium intake, and prostate cancer risk in a case-control study among 656 British men, conducted in 1989-1992. Nail clippings were taken at the time of recruitment and selenium concentration, measured using neutron activation techniques, was successfully assayed for 300 case-control pairs and varied six-fold among the controls (0.59 p.p.m.; interquartile range, 0.50-0.71 p.p.m.). Nail selenium concentration was not significantly associated with prostate cancer risk: men in the highest quartile of nail selenium had a slightly increased risk compared with men in the lowest quartile (OR 1.24, 95 CI, 0.73-2.10); for advanced prostate cancer, men in the highest quartile had a slightly reduced risk compared with men in the lowest quartile (OR 0.78, 95% CI, 0.27-2.25). These results suggest that selenium is not strongly associated with prostate cancer risk in British men

    Spatio-structural granularity of biological material entities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the continuously increasing demands on knowledge- and data-management that databases have to meet, ontologies and the theories of granularity they use become more and more important. Unfortunately, currently used theories and schemes of granularity unnecessarily limit the performance of ontologies due to two shortcomings: (i) they do not allow the integration of multiple granularity perspectives into one granularity framework; (ii) they are not applicable to cumulative-constitutively organized material entities, which cover most of the biomedical material entities.</p> <p>Results</p> <p>The above mentioned shortcomings are responsible for the major inconsistencies in currently used spatio-structural granularity schemes. By using the Basic Formal Ontology (BFO) as a top-level ontology and Keet's general theory of granularity, a granularity framework is presented that is applicable to cumulative-constitutively organized material entities. It provides a scheme for granulating complex material entities into their constitutive and regional parts by integrating various compositional and spatial granularity perspectives. Within a scale dependent resolution perspective, it even allows distinguishing different types of representations of the same material entity. Within other scale dependent perspectives, which are based on specific types of measurements (e.g. weight, volume, etc.), the possibility of organizing instances of material entities independent of their parthood relations and only according to increasing measures is provided as well. All granularity perspectives are connected to one another through overcrossing granularity levels, together forming an integrated whole that uses the <it>compositional object perspective </it>as an integrating backbone. This granularity framework allows to consistently assign structural granularity values to all different types of material entities.</p> <p>Conclusions</p> <p>The here presented framework provides a spatio-structural granularity framework for all domain reference ontologies that model cumulative-constitutively organized material entities. With its multi-perspectives approach it allows querying an ontology stored in a database at one's own desired different levels of detail: The contents of a database can be organized according to diverse granularity perspectives, which in their turn provide different <it>views </it>on its content (i.e. data, knowledge), each organized into different levels of detail.</p

    Granulocyte-Colony Stimulating Factor (G-CSF) in Stroke Patients with Concomitant Vascular Disease—A Randomized Controlled Trial

    Get PDF
    G-CSF has been shown in animal models of stroke to promote functional and structural regeneration of the central nervous system. It thus might present a therapy to promote recovery in the chronic stage after stroke.Here, we assessed the safety and tolerability of G-CSF in chronic stroke patients with concomitant vascular disease, and explored efficacy data. 41 patients were studied in a double-blind, randomized approach to either receive 10 days of G-CSF (10 µg/kg body weight/day), or placebo. Main inclusion criteria were an ischemic infarct >4 months prior to inclusion, and white matter hyperintensities on MRI. Primary endpoint was number of adverse events. We also explored changes in hand motor function for activities of daily living, motor and verbal learning, and finger tapping speed, over the course of the study.Adverse events (AEs) were more frequent in the G-CSF group, but were generally graded mild or moderate and from the known side-effect spectrum of G-CSF. Leukocyte count rose after day 2 of G-CSF dosing, reached a maximum on day 8 (mean 42/nl), and returned to baseline 1 week after treatment cessation. No significant effect of treatment was detected for the primary efficacy endpoint, the test of hand motor function.These results demonstrate the feasibility, safety and reasonable tolerability of subcutaneous G-CSF in chronic stroke patients. This study thus provides the basis to explore the efficacy of G-CSF in improving chronic stroke-related deficits.ClinicalTrials.gov NCT00298597

    Conjugation to the Cell-Penetrating Peptide TAT Potentiates the Photodynamic Effect of Carboxytetramethylrhodamine

    Get PDF
    Cell-penetrating peptides (CPPs) can transport macromolecular cargos into live cells. However, the cellular delivery efficiency of these reagents is often suboptimal because CPP-cargo conjugates typically remain trapped inside endosomes. Interestingly, irradiation of fluorescently labeled CPPs with light increases the release of the peptide and its cargos into the cytosol. However, the mechanism of this phenomenon is not clear. Here we investigate the molecular basis of the photo-induced endosomolytic activity of the prototypical CPPs TAT labeled to the fluorophore 5(6)-carboxytetramethylrhodamine (TMR).We report that TMR-TAT acts as a photosensitizer that can destroy membranes. TMR-TAT escapes from endosomes after exposure to moderate light doses. However, this is also accompanied by loss of plasma membrane integrity, membrane blebbing, and cell-death. In addition, the peptide causes the destruction of cells when applied extracellularly and also triggers the photohemolysis of red blood cells. These photolytic and photocytotoxic effects were inhibited by hydrophobic singlet oxygen quenchers but not by hydrophilic quenchers.Together, these results suggest that TAT can convert an innocuous fluorophore such as TMR into a potent photolytic agent. This effect involves the targeting of the fluorophore to cellular membranes and the production of singlet oxygen within the hydrophobic environment of the membranes. Our findings may be relevant for the design of reagents with photo-induced endosomolytic activity. The photocytotoxicity exhibited by TMR-TAT also suggests that CPP-chromophore conjugates could aid the development of novel Photodynamic Therapy agents
    corecore